
Daniele Giannetti



Introduction

• XVR relies on the services of a low-level real-time rendering library in order 
to generate pictures of the virtual scene during each frame.

• This low-level library is what we call engine.

• The engine present in the current version of XVR is called VRLib (Virtual 
Reality Library).

• It is written in pure C++ and uses the OpenGL interface to the graphics 
hardware.

Why a new engine? [1]

Daniele Giannetti 1

XVR Engine VRLib OpenGL

Part of the XVR Virtual Machine



Introduction

• The VRLib is quite obsolete (even if powerful and flexible).

• OpenGL and other graphics systems are moving towards a fully 
programmable approach to graphics (only relying on shaders).

• Some common operations are not directly supported by the VRLib (such as 
shadow casting, which must be realized using XVR shaders and FBOs).

• There is no built-in support for physical simulation of virtual objects (very 
useful in common applications).

Why a new engine? [2]

Daniele Giannetti 2

Objectives of the new Engine

Use only modern 
rendering techniques 
(shaders) and use a 

recent version of the 
OpenGL graphics system.

Introduce a set of easy-
to-use, advanced 

rendering capabilities 
such as built in support 
for soft shadow casting.

Introduce physical 
simulation capabilities in 

the new engine, in 
particular we require a 

full support for rigid 
bodies simulation.



Introduction

• A new low-level real-time rendering library was developed in summer and 
fall 2010, its name is VR3Lib.

• It uses version 3.3 of the OpenGL API and has built-in support to rigid body 
simulation (implemented using the Nvidia PhysX solution).

• It can already be used in pure C++.

• It is being integrated in the XVR framework replacing the previous VRLib 
(work in progress).

• Most of the core features are already available in an internal XVR version 
(still not available to the community).

• The entire scene management (that happens under the hood from the 
perspective of the XVR programmer) is done using the new facilities 
provided by the VR3Lib.

• We are going to show some of the main additional features provided by 
the VR3Lib and how to use them in XVR.

Implementation of the new engine

Daniele Giannetti 3



Basic engine capabilities

• Most of the standard XVR classes have been replaced with updated 
equivalents:

– CVmCamera → XCamera

– CVmObj → XObj

– CVmMesh → XMesh

– CVmText → XText

– CVmLight → XLight

• They can be used in a similar way to the previous version, but under the 
hood the operations are radically different (the VR3Lib has been written 
from scratch).

• When drawing objects without specifying external shaders, the VR3Lib will 
use built-in shaders to perform any type of rendering (conforming to the 
latest versions of the OpenGL Graphics System).

Basic classes

Daniele Giannetti 4



Basic engine capabilities
Example: drawing a simple object

Daniele Giannetti 5

// 1_simple
function OnInit(params) {

obj = XObj("data/Statue.AAM");
obj.SetPosition(0.0,0.0,-3.0);

}
function OnFrame() {

SceneBegin();
obj.Draw();

SceneEnd();
}

• Default direct lighting: weak diffuse lighting with point light at position 
(40,20,20) – Phong reflection model.

• Even this simple rendering is done with the help of shaders (built-in the 
VR3Lib engine).



Advanced illumination
Built-in support to IBL

Daniele Giannetti 6

• Direct illumination is a classical but obsolete method to compute 
illumination of virtual objects.

• The new engine includes built-in environment mapping capabilities (a very 
simple IBL technique).

• Environment mapping is often coupled with skyboxes, skyboxes are 
directly supported by the VR3Lib (cube map format) and can be activated 
very easily using new XVR functions.

• Real world images can be transformed in cube maps using well-known 
tools (such as ATI CubeMapGen).

• HDR cube maps are supported.

• A couple of different cube maps are used to compute illumination:

– Diffuse cube environment map

– Specular cube environment map



Advanced illumination
Example: Using IBL and skyboxes

Daniele Giannetti 7

// 2_IBL_skybox
function OnInit(params) {

var cam = CameraGetCurrent();
cam.SetPosition(2.0,0.0,-2.0);
cam.SetDirection(-1.0,0.0,1.0);
LoadBackground(

"data/specular_map.bmp",true);
SceneEnvironmentMapping(

"data/diffuse_map.bmp",
"data/specular_map.bmp");

obj = XObj("data/Statue.AAM");
obj.RotateGlobal(180.0, 0.0, 1.0, 0.0);

}
function OnFrame() {

SceneBegin();
obj.Draw();

SceneEnd();
}

• The specular map is also used as skybox in this case (common procedure)

• The diffuse map is usually a filtered version of the specular map, using for 
example a strong blur filter.

• The true flag in LoadBackground() means that the image is a skybox.



Surface details
Normal and displacement mapping

Daniele Giannetti 8

• Highly detailed objects should not be rendered as high-poly models in real 
time 3d graphics.

• It is desirable to use texture-based methods with low-poly models in order 
to forge fake surface details.

• The well-known normal mapping technique is available in the new engine, 
and the proper normal mapping shader is used when a normal map is 
associated with the loaded model.

• A built-in displacement mapping technique is also available, in this case 
geometry is altered at render time using dynamic tessellation 
(implemented in the geometry shading OpenGL stage). The displacement 
mapping shader is automatically used when a displacement map (or height 
map) is associated with the loaded object.

• The XVR code to use those functions not different from the previous 
examples: just load and draw the objects when needed.



Surface details
Results

Daniele Giannetti 9

Normal mapping

• Both models are low-poly (12 
triangles).

• The dice on the right is normal 
mapped.

Displacement mapping

• The dice is again a low-poly 
model.

• The bumps are created at 
render time by displacing 
vertices obtained from 
tessellation.



Soft Shadows
Obtaining soft shadows with EVSM [1]

Daniele Giannetti 10

• Many different modern techniques are available to obtain soft shadows 
(research in this field is very active):

– VSM (Variance Shadow Mapping)

– PCSS (Percentage Closer Soft Shadows)

– ESM (Exponential Shadow Mapping)

– Penumbra Wedges

– …

– Hybrid approaches

• The VR3Lib includes an implementation of the EVSM (Exponential Variance 
Shadow Mapping) method, which improves upon VSM and ESM by solving 
or reducing common artifacts (such as the well-known light bleeding).

• Algorithm parameters might be tuned to get the best result depending on 
the particular scene.



Soft Shadows
Obtaining soft shadows with EVSM [2]

Daniele Giannetti 11

• EVSM requires two rendering passes, and a filtering pass in the middle

1. Render the shadow map

2. Filter the shadow map

3. Render the scene with shadows

• This is hidden from the XVR user as the first two steps are performed 
automatically by the VR3Lib.

• The user must simply initialize shadow mapping (using ShadowInit()), 
specify which objects should receive and cast shadows and create the 
desired shadow sources (XShadowSource class).

• A shadow source is intended in XVR as an entity that causes objects to cast 
shadows (it might be in the same position of a light, but a light is not 
required to cast shadows, this is useful when using environment maps).

• EVSM algorithm parameters may be altered on a per-source basis.



Soft Shadows
Example: object casting a shadow

Daniele Giannetti 12

// 5_shadows
function OnInit(params) {

[...]
ShadowInit();
ShadowEnable(VR_SHADOW_FACE_CULLING);
ShadowDisable(VR_SHADOW_VF_CULLING);
ShadowDisable(VR_SHADOW_SOURCE_CULLING);
source1 = XShadowSource(

0.0, 5.0, -5.0, // source position
0.0, 1.0, 0.0, // up vector
0.0, -1.5, 0.0, // target
60.0, // fovy
1.0, // aspect ratio
1.0, // znear distance

20.0, // zfar distance
512, // map width
512); // map height

source1.Enable();

obj1 = XObj("data/Statue.AAM");
obj1.RotateGlobal(-90.0,0.0,1.0,0.0);
obj2 = XObj("data/Floor.AAM");
obj2.RotateGlobal(-90.0,1.0,0.0,0.0);
obj2.SetPosition(0.0,-1.5,0.0);

}

• In this example, all objects are automatically registered as both casters and receivers 
(ShadowInit() has an optional parameter to specify manual registration).

• The drawing code is the usual one, no new operations are needed.



Soft Shadows
Results

Daniele Giannetti 13

Some well-known 
artifact may still 
be visible when 

using EVSM, but
the results are 

usually satisfying.

EVSM is a fairly 
innovative
technique, 

relevant 
literature on it 

has yet to come.



Physical Simulation
Rigid body simulation capabilities [1]

Daniele Giannetti 14

• The Nvidia PhysX engine is used inside the VR3Lib to efficiently obtain 
position and rotation of simulated rigid bodies.

• This is transparent to the XVR user, who simply initializes physical 
simulation by calling PhysicsInit().

• A set of functions is available to control the simulation (pause, stop, 
restart).

• Some physical property of the simulated objects can be changed during 
simulation.

• Apart from simple rigid body simulation, joints, motorized joints and 
contact notifications are supported by the VR3Lib (this allows construction 
of complex kinematic chains).

• Three simulation types for virtual objects:

– Dynamic: affected by collisions and forces.

– Kinematic: will collide with dynamic objects, moves only upon user actions.

– Static: will collide with dynamic objects, never moves.



Physical Simulation
Rigid body simulation capabilities [2]

Daniele Giannetti 15

• PhysX is unable to simulate concave meshes for dynamic and kinematic 
objects.

• Dynamic and kinematic object meshes are automatically decomposed in a 
set of convex shapes which constitute an approximation of the concave 
shape.

• The obtained convex hulls are considered a single compound when 
simulating the dynamic or kinematic objects.

• The convex decomposition code has been included in the XVR plugin used 
to export AAM files from 3ds Max.

• A new version of the plugin was 
produced, which is the one to use 
when working with the new XVR 
engine.



Physical Simulation
Example: object falling on another object

Daniele Giannetti 16

• In order to choose which objects need to be simulated, the user must 
specify an optional parameter to the PhysicsInit() function.

• The simulation needs to be prepared and then started, but the preparation 
happens automatically if not done before PhysicsStart() (which will start 
the simulation).

// 6_physics
function OnInit(params) {

[...]
PhysicsInit();

obj1 = XObj("data/Stone1.AAM");
obj1.SetPosition(0.0,1.5,0.0);
obj1.RotateGlobal(45.0,1.0,0.0,0.0);
obj2 = XObj("data/Floor.AAM");
obj2.RotateGlobal(-90.0,1.0,0.0,0.0);
obj2.SetPosition(0.0,-1.5,0.0);

PhysicsPrepare();

PhysicsStart();
}



Physical Simulation
Example: adding a joint

Daniele Giannetti 17

• Joints must be added after the simulation has been prepared.

• Joints may be added and removed at any time, and some support springs, 
limits and motors. 

• Joints may be created between two objects, or between an object and the 
world (as in our case).

// 7_physics
function OnInit(params) {

[...]
PhysicsInit();

obj1 = XObj("data/Stone1.AAM");
obj1.SetPosition(1.3,1.5,0.0);
obj1.RotateGlobal(45.0,1.0,0.0,0.0);
obj2 = XObj("data/Floor.AAM");
obj2.RotateGlobal(-90.0,1.0,0.0,0.0);
obj2.SetPosition(0.0,-1.5,0.0);

PhysicsPrepare();
joint = PhysicsAddRevoluteJoint(

obj1, 0.0, 1.5, 0.0, 0.0, 0.0, 1.0);
PhysicsStart();

}



Physical Simulation
Debugging physical simulation

Daniele Giannetti 18

• Because joints are invisible and shapes used for physical simulation are 
different than the ones used for graphics, debugging physical simulation 
can be hard.

• The physical equivalent of an XVR scene can be viewed using the Nvidia
PhysX Visual Debugger with a debug version of XVR (including the debug 
version of the VR3Lib).



Physical Simulation
Results

Daniele Giannetti 19

Complex
physically 

animated scenes 
are easily 

handled with the 
VR3Lib.

Physical 
simulation will 

hardly ever 
affect frame rate 

if a multicore 
processor is 

available.



Exporting AAM Files

Daniele Giannetti 20

The new 3ds Max exportation plugin must be used to produce AAM files to 
feed the new engine. Apart from physical properties, the updated plugin is 
also necessary to access the new texture-based shading techniques.

Flag used to export 
physical properties 

(necessary for physical 
simulation of objects 

exported).

Controls to export 
textures for the new 
techniques (normal 
and displacement 

mapping).



Conclusion and Future Work

Daniele Giannetti 21

• The VR3Lib is not yet fully integrated in the XVR framework (work in 
progress).

• More capabilities might be added to the new XVR engine before being 
distributed to the community (e.g. support to physical simulation of non-
rigid bodies).

• As the new engine was written using one of the latest OpenGL version (and 
only core functions), support to the functionalities is guaranteed for the 
future.

• Some work still to do (e.g. add full support to animation and characters).

• The new XVR version is currently being internally used for some research 
projects.




